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Graph cyclicity, excess conductance, and resistance deficit
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A new graph-theoretic cyclicity indexC(G) is defined, being motivated in terms of math-
ematical concepts from the theory of electrical networks. This “global bond excess conduc-
tance” indexC(G) then is investigated, with a number of theorems as well as some discussion
and numerical investigation. It is found thatC(G) typically has less degeneracy than the stan-
dard cyclomatic number and has some intuitively appealing features.
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1. Introduction

Electrical circuits provide a natural realization of graphs, and indeed have been so
recognized since Kirchoff’s [1] foundational paper of 1847, where some fundamental
graph theoretical theorems were enunciated. Not too long after this molecular structures
also began being represented as graphs, e.g., by Brown [2] in 1864. As it happens the
mathematical field of graph theory was only recognized as a separate field somewhat
later, really only fully developed in the twentieth century, with the first book on graph
theory being that of Koenig [3] in 1937, and a sort of general recognition for the field
arises perhaps only with Harary’s book [4] of 1969. Early on Sylvester [5] in 1878 imag-
ined an intimate contact between this then embryonic mathematical field and chemistry
– and indeed he then seems to have introduced the phrase “graph” (or “graphoid”) for
these mathematical constructs, perhaps drawing this term from the chemical literature
where structural molecular formulas were sometimes described as “graphical represen-
tations” (of molecules). Later (in 1937) Polya’s fundamental combinatorial enumerative
results [6] were largely motivated for related chemical applications. Still the field of
chemical graph theory really has significantly developed within chemistry only over the
last few decades, with an early (1976) edited book [7] being Balaban’s onChemical Ap-
plications of Graph Theory and a more recent (1983) nice text [8] in this overall area
being Trinajastícs Chemical Graph Theory. The mathematical formalization of electri-
cal network theory seems to have occurred more gradually and earlier (e.g., with some
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mathematical theory of circuits found in Maxwell’s famous treatise [9] of around 1900),
but with varying degrees of development in different editions. A fairly elegantly well de-
veloped treatment is that of Reed and Seshu [10] in 1961. Indeed in the area of electrical
network theory a number of novel theorems have been developed, with reaction back on
the mathematical field, as exemplified in the charming book [11] of 1984 by Snell and
Doyle. Thence it may be imagined that there too should be some valuable theory from
the field of electrical networks for chemical applications. Indeed, the relative lack of
such applications may seem especially surprising of in view of the fact that Kirchoff’s
original paper was in a “chemistry” journal. Only recently does it seem that some such
suggestions have been seriously attended to, as in [12,13].

Here it is proposed to seek to develop the concept of “cyclicity” as motivated from
electrical network theory, with the idea that this may prove useful for chemical graph-
theoretic applications, and perhaps also for mathematical graph theory. The matter of the
characterization of “cyclicity” is an aspect of key importance in the study of molecular
graphs, e.g., as discussed by Bonchev and co-workers [14,15]. And in mathematics the
idea of cyclicity is intimately related to measures of connectivity or complexity, e.g., as
discussed by Tutte [16].

There are different possible measures of “cyclicity” of a graph G. One simple such
traditional fundamental measure is thecyclomatic number µ(G) of a graph G withN(G)
vertices,e(G) edges, andk(G) components, whence

µ(G) ≡ e(G)− N(G)− k(G). (1)

This invariant is standardly found in most graph-theory texts, such as that of Harary [4],
where it is noted to count the number of edge deletions it takes to make a graph acyclic.
And this invariant is of key chemical relevance as may be exemplified for a (classical
non-radicaloid) hydrocarbon represented by a carbon skeleton identified to G, for then
this indexµ = µ(G) is involved in the overall molecular formula CNH2N+2−2µ, whence
tooµ is some sort of degree of “unsaturation”. But evidently then all species of the same
isomer class have the same cyclomatic number, so that there are many graphs whichµ

does not distinguish. E.g., all monocycloalkanes CNH2N have the same valueµ = 1,
regardless of the value ofN (and regardless of any saturated acyclic side structures).
At least in chemical behavior many of the properties of such large-cycle cycloalkanes
should approach those of corresponding open-chain normal alkanes CNH2N+2. Intu-
itively one might sense this, at least if one is concerned with properties dependent on
local structure – properties such as heat of formation per carbon or magnetic suscep-
tibility per carbon, or index of refraction. Of course, there are other properties which
are undoubtedly somewhat different, say as depend on overall molecular conformation,
whence the mean spatial extent of a cycloalkane might be but a fraction of that for the
correspondent open-chain alkane. Of the chemical studies [14,15,17] devoted to a study
of “cyclicity”, most consider various already available indices as potential correlates to
“cyclicity”. Here we startde novo, seeking to develop a cyclicity graph invariant from a
fundamental graph-theoretic/electrical-network perspective.
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2. New cyclicity measure

In fact, the relevance of cyclicity is deeply embedded in electrical network theory
(with trees and the cyclomatic number already evident in Kirchoff’s original work [1]).
To develop this perspective imagine a molecular graph G (with H atoms deleted) to
correspond to an electrical network with “unit resistors” on each edge. Then if opposite
poles of a battery are connected to different pairs of vertices of the network, different
currents flow. Indeed there will be different effectiveresistances 	ij between different
vertex pairsi andj – or equivalently there will be different effectiveconductances

σij ≡ 1/	ij . (2)

It is simply a matter of tradition that resistances rather than conductances are used in
expressing Ohm’s law. A conductance may be viewed as a sort of efficacy of communi-
cation between two sites. Now it turns out (as is well known) that	ij (and thence also
σij ) attends to the presence of multiple pathways between vertices, and as such might
also be imagined to be of relevance in chemistry, where particular multiple pathways
of length 1 (i.e., multiple bonds) are always recognized to be extremely important, and
even for larger cycles notably different properties can arise, e.g., as occurs for the 6-
cycle of benzene to make it dramatically different than linear hexatriene. Distancesdij
are plausibly relevant to “particulate communication” (or interaction) between verticesi

andj while the resistance distance	ij is plausibly relevant to a diffuse wave-like (i.e.,
multi-path) communication.

The resistances	ij (and hence also the conductancesσij ) are sensitive to the cycle
structure of a graph G. Indeed, there is a fundamental result:

Ordering theorem for 	 and d. For a connected graph G,	ij equals the lengthdij of
the shortest path betweeni andj iff there is a unique single path betweeni andj , while
if there is more than one path (even of different lengths), then	ij is strictly less thandij .

See, e.g., [12]. Thence theresistance deficit dij − 	ij or theconductance excess
σij − 1/dij indicate in some manner the presence of cyclicity in the portion of the graph
interconnectingi and j . In fact these quantities detect the presence of cycles in the
region betweeni andj regardless of whetheri andj are themselves in a cycle. To more
directly detect the mutual occurrence ofi andj in a cycle one may focus oni andj
which are adjacent, whencedij −	ij andσij − 1/dij give non-zero values only ifi and
j are both in a mutual cycle. Thence we propose aglobal cyclicity index C(G) for a
general graph G as

C(G) ≡
G∑
i−j

(
σij − d−1

ij

)
(3)

where the sum is over all edges of G. This index may be interpreted as a “total excess
bond conductance”. With attention to resistances rather than conductances, our discus-
sion suggests another possibility for a global cyclicity index as

µ�(G) ≡
G∑
i−j
(dij −	ij ) (4)
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which may be interpreted as a “total bond resistance deficit”. A further consequence of
a focus on adjacent pairs of vertices, is that these formulas remain unambiguous (and
finite so long as G is finite) regardless of whether G is connected or not. Here we
investigate some characteristics of these cyclicity indices, and most especiallyC(G).

3. Useful background framework

Though we have motivated our cyclicity indices in physical terms (as a global ex-
cess bond conductance or as a global bond resistance deficit), these indices are intrinsic
to the graph G – i.e.,µ′(G) andC(G) are graph invariants. This is made more explicitly
manifest in terms of theLaplacian matrix L (given as the diagonal degree matrix minus
the adjacency matrix of G). It may be seen that for a column vectorx with elementsxi
that

x†Lx =
G∑
i−j
(xi − xj )2 (5)

where the sum is over edges of the graph G. From this relationL is seen to be non-
negative definite, and it may also be seen thatL must have exactly one (independent)
0-eigenvalue eigenvector for each component of G – namely, the vectors which are con-
stant on a component and 0 elsewhere. ThusL has a generalized inverse� which is
0 on the 0-eigenvalue eigenspaceV0 of L, and is a true inverse toL on the orthogonal
componentV �=0 to this null space. Then it turns out that for a connected graph G, the
resistances	ij for i andj within the same component of G are given in terms of the
elements of�, thusly

	ij = �ii − �ij − �ji + �jj . (6)

Such has long been known in electrical network theory, though the development usually
is for the case where different non-zero resistorsrij are associated to edges{i, j} of G,
and one studies a weighted Laplacian (with off-diagonal elementsLij = −1/rij ). See,
e.g., [7] or for a more purely graph-theoretic formulation see, e.g., [12]. For connected
G, there are also other characterizations of	ij :

• combinatorially in terms of trees and bi-trees [18];

• probabilistically in terms of random walks on G [11];

• as an intrinsic graph metric on each graph G [12]; and

• as a long-wave-length weighted amplitude-difference of eigen-wave-func-
tions [20] on G.

In fact these definitions extend to disconnected graphs so long as the verticesi andj
considered are in the same component of G – one merely takes the	ij (andσij ) values
to be the same as that with the single component being the whole graph – and fori andj
in different components one naturally takesσij = 0. Moreover it may be mentioned
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Figure 1. A depiction of the substitution rule, identifying an “equivalent circuit”. Here the graph considered
consists of the portion other than the top connection with a battery, which is introduced to identify the two
vertices (i and j ) between which the effective resistance is to be taken. The battery is reconnected to
different pairs of vertices in considering different effective resistances	ij , between these vertices. As

mentioned in the text this effective resistance may be identified as a distance betweeni andj .

that	ij provides [12] an intrinsic metric on a graph. It seems to us that especially the
tree/bi-tree and probabilistic interpretations might also be neatly used to motivate our
cyclicity indices.

In establishing our theorems for the global cyclicity index, we use a few well-
known results for electrical networks. These are best stated if allowance is made for
resistors of different values to be associated with different edges of a then weighted
graph, whence in such a case the values of the resistors on the edges are appended as
labels to the edges.

Substitution rule. Let a graph G have a connected subgraph H joinedvia only two of its
verticesa andb to the rest of the graph, let any edge betweena andb be included in H, let
the effective resistance in H betweena andb beRab, and leti andj be two vertices of G
such that neitheri nor j is a vertex in H other thana or b. Then the effective resistance
	ij is equal to that between the graph GH with all of H deleted from G excepting vertices
a andb which are connected with a new edge of weightRab.

This rule might be depicted as in figure 1. The utility of this rule (or theorem) is
made manifest if one has effective resistances for a few elementary subgraphs, such as a
cycle and a chain.

Series rule. Let a andb be the two terminal vertices of an edge-weighted chain graph.
Then the resistanceRab is the sum of the edge weights.

Parallel rule. Let a andb be two vertices of an edge-weighted subgraphs, and letR1

andR2 be the sums of the edge weights along the two paths betweena andb. Then the
inverse of the resistance betweena andb is the sum of the inverses ofR1 andR2.

In fact these three “rules” (which are in fact theorems) are found not only in electri-
cal circuit theory texts, but usually are developed in introductory physics texts. Thence
millions of people are aware of these rules, though not all effective resistances for all
circuits can be so obtained (using just series and parallel substitutions). Also related to
the substitution rule there is a related result:
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Figure 2. A depiction of the elimination rule, identifying “equivalent circuts”.

Elimination rule. Let H be a subgraph of G connected to the rest of G via only a single
vertexa, as in the substitution theorem, and leti andj be two vertices in H. Then the
effective resistance	ij betweeni andj in G is the same as that	′ij betweeni andj
in H.

This may be depicted as in figure 2. In fact this theorem really is only physically
plausible. Basically if a battery is connected between verticesi andj of the subgraph H
of this theorem, then there can be no flow of current outside the subgraph H for it would
need to flow through vertexa to or from the remaining part of the graph where there is
no source or sink. In fact, in the physical context, e.g., of the development of section 2
of [12], this in essence constitutes a proof. With these few standard sorts of “rules” in
hand the bulk of the results of the next section turn out to be fairly readily establishable.

4. Statement and discussion of theorems

Our theorems, corollaries, and lemmas are stated in this section along with a dis-
cussion of their meaning and interpretation. The proofs are given in the next section
following.

As a first point the formulas for the two indicesC andµ� may be recast in terms
of matrices� andσ with respective elements	ij andσij . Then:

Theorem A. If G is a graph withe(G) edges and an adjacency matrixA, then

C(G) = tr{σA} − e(G) and µ�(G) = e(G)− tr{�A}
where tr denotes the trace operation.

That is, these indices are given in terms of matrix invariants And as a second point
we may consider the indexµ�, which though not our prime focus, does clearly turn out
to be a cyclicity index, because:

Theorem B. For any graph G, µ�(G) = µ(G).

That is,µ� provides naught but a reinterpreted form (as a global bond resistance
deficit) for the standard cyclomatic number.
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Of prime focus here is the cyclicity indexC. Support forC being a cyclicity index
is attained from the close correspondence and favorable result (of theorem B) forµ�. In
addition we have:

Theorem C. For an arbitrary graph G, C(G) � 0 andµ(G) � 0, with equality for
exactly the same G – that is,C(G) = 0 iff µ(G) = 0.

BothC(G) andµ(G) turn out to have identical values for acyclic graphs, though
even in such a circumstance the new indexC(G) has a somewhat different interpretation
(as a global excess bond resistance). Further similarity betweenC andµmay be adduced
if we define akernal G↓ of a graph G to be a new graph obtained from G by repetition
of certain “deletion” transformations:

• degree-0 sites are deleted; and

• edges which if deleted would leave two new disconnected fragments, are deleted;

• a site asi which if deleted would leave two new disconnected fragments H and
K, is used to construct two graphs: H+ isomorphic to that induced from the
vertices of H along withi, and K+ isomorphic to that induced from the vertices
of K along withi.

Such a kernal G↓ contains no degree-1 vertices nor what are frequently termed “isth-
muses” or “bridges”. An illustrative example is provided in figure 3. For a tree G it turns
out that G↓ is the empty graph (in which caseC(G) = 0). The third type of transfor-
mation here gives two subgraphs which might be viewed to share a common vertexi,
but we view one of the two new graphs H+ and K+ rather to involve a “copy” of the
common vertex so that H+ and K+ are disjoint. Now we have:

Theorem D. For any graph G,µ(G) = µ(G↓) andC(G) = C(G↓).

Still C andµ seem similar. For some cases similarity short of identity (between
the values ofC andµ) applies:

Figure 3. Example of transformations leading from a graph G to its kernal G↓.
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Theorem E. For any connected graph G withµ(G) = 1, G has a single cycle of some
sizen (� 3) andC(G) = n/(n− 1).

Here for G withµ(G) = 1 this theorem implies thatC(G) approachesµ(G) as
the size of the single cycle becomes very large. At the same timeC(G) seems to be
less degenerate thanµ(G), and to conform to our introductory intuitive suspicion that of
the simpleN-vertex single-cycle graphs cN , those with largerN should be less cyclic.
Further one sees that thoughµ(G) is invariant under homeomorphism transformations
(where “contractions” may take place at degree-2 sites),C(G) is not generally invariant
under such transformations (for otherwise all cycles cN would have the same value for
C(cN ) for all N � 3). We further have:

Theorem F. Let G be a graph G with a kernal G↓ consisting of two disjoint graphs H
and K. Thenµ(G) = µ(H)+ µ(K) andC(G) = C(H)+ C(K).

This again emphasizes a similarity betweenµ andC, and in particular for any dis-
connected graph bothC andµ are the sums of the corresponding values for the different
components. This theorem also leads to:

Corollary G. Let G be a connected graph with a kernal G↓ which is a set ofn disjoint
cycles. Thenµ(G) = n and

C(G) =
n∑
q=1

nq

nq − 1

with nq the size of theqth cycle of G↓.
Evidently now we can see that sometimes even whenµ is not degenerate, our

cyclicity indexC can turn out to be degenerate: e.g., if G↓ consists of six disjoint 3-
cycles and G′↓ consists of seven disjoint 8-cycles, thenC(G) = 8 = C(G′). Note
too that the example need not be confined to disjoint cycles, but may involve connected
graphs G and G′ with the indicated disconnected kernals. Still from theorem E and
corollary G it seems that the more typical case is thatC is less degenerate thanµ.

In-as-much-as graphs with cyclomatic numbersµ(G) = 0 and 1 have now been
quite fully treated one might next focus on those withµ(G) = 2. Thence we note that:

Lemma H. If G is a connected graph withµ(G) = 2, then G is planar and has a kernal
G↓ of one of the two forms

,

wherem, n, p identify lengths of indicated cycles in the first form and of paths in the
second form.
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Evidently the index for such a graph with a kernal of the first form is covered by
corollary G, while for one with a kernal of the second form, we have:

Theorem I. If G is anN-vertex connected graph withµ(G) = 2 and a kernal G=
�m,n,p, then

C(G) = m(p + n)
S − p − n +

n(p +m)
S −m− p +

p(m+ n)
S − n−m

whereS ≡ mn+ np + pm.

One might imagine seeking to go on explicitly to the next higher cyclomatic num-
ber:

Observation J. If G is a connected graph withµ(G) = 3, then G is planar and there are
but five possible types of kernals G↓, of one of the forms in figure 4.

The indexC for such graphs with a kernal of the first two (disconnected) forms are
covered by the results E, F, and I previously, and presumably formulas such as given in
theorem I could be developed for the remaining three forms.

In addition to the transformations which reduce a graph to its kernal, there are also
some other transformations which leaveC(G) invariant:

Observation K. If a transformation of a graph G is made to G′ with one edge e moved
about in a cycle so that whatever cycles e is in, e retains membership therein, then
C(G′) = C(G).

A specialization of this result might be made, to simplified circumstances of com-
mon chemical relevance:

Theorem L. Let G be graph with a cycle c which if deleted leaves disconnected com-
ponents, H1,H2, . . . ,Hm such that each component connects to c either at a single site
or at a single edge. Let H+a be that graph induced from Ha and whatever vertices in c to
which Ha connects. Then any edge e of c may be moved about in c along with whatever
H+a this edge might be in so as to obtain another graph G′ with C(G′) = C(G). If a
fragment H+b shares only a single sitei with c and only a single site with e, then whether
or not H+b is moved with e does not affect the value of the cyclicity indexC.

Figure 4. The five general forms for kernals G↓ of graphs G withµ(G) = 2.
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Figure 5. An example of the size-conservingC-fixed transformation of theorem L.

The circumstance is depicted in figure 5. A chemically relevant example of such
a transformation of this type is that which interchanges anthracene and phenanthrene
graphs:

That is,C identifies these two graphs to be of the same cyclicityC(G) = 116/31 ≈
3.74194. Indeed because benzenoids are of much interest, we might direct attention
to the case of aphenacenic chain of fused benzene rings, the non-terminal rings of
which may be fused in either of the two patterns of the central rings of anthracene or of
phenanthrene. Then:

Corollary M. Every phenacenic chain with the same numberh of hexagons has exactly
the same cyclicity index,Ch.

That is, the∼3h such isomeric phenacenic chains ofh hexagonal rings exhibit
degeneracy. Indeed we might list the first few values:

C1 = 6/5, C2 = 358/145≈ 2.4690, C3 ≈ 3.7419, C4 ≈ 5.0151,

C5 ≈ 6.2883, C6 ≈ 7.5614, C7 ≈ 8.8346, C8 ≈ 10.10775,

C9 ≈ 11.3809, C10 ≈ 12.6541, C11 ≈ 13.9272, C12 ≈ 15.2004,

C13 ≈ 16.4736, C14 ≈ 17.7467, C15 ≈ 19.0199, . . .

(7)
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Moreover, for this sequence, a near linear relation is perceived for the values, so that
they are closely approximated by

Ch ≈ A · h− B, A ≈ 1.273162 andB ≈ −0.077553, (8)

as obtained by least squares fitting the numerical data forh = 3→ 60. This result is
quite accurate, withr being 1 to less than 10−6, a standard deviations ∼= 10−6.

We surmise that many different homologous sequences of molecular species should
exhibit similar regular asymptotic behaviors. If there is a single bond interconnecting
adjacent monomer units, then the linearity in the number of such units is exact.

Finally, some results are available for suitably regular graphs (even of higher
cyclicities):

Theorem N. For a connectedN-vertexd-regular edge-transitive graph G,

C(G) = N

N − 1

(
1+N d − 2

2

)
= µ(G)+ N

N − 1

d

2
.

In particular, this applies to the graphs of the regular polyhedra, such as have been
of some interest, even in connection [13,20] with resistance distances. Thence we may
note:

Corollary O. For the graphs of the regular polyhedra

C(K4) = 4, C(Q3) = 40

7
≈ 5.71, C(O3) = 42

5
= 8.4,

C(D) = 220

19
≈ 11.58, C(I) = 228

11
≈ 20.73

where K4, Q3, O3, D, and I respectively denote the graphs of the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron.

For comparison the cyclomatic numbers of the regular polyhedral graphs may be
noted:

µ(K4) = 3, µ(Q3) = 5, µ(O3) = 7, µ(D) = 11, µ(I) = 19. (9)

Evidently the values are in the same order. More generally, theorem N applies to the
graphs of regular polytopes, and other regular graphs (such as the complete bipartite
graphs Kn,n and the “Peterson” graph, such as appears in the logo on the present journal).

5. Proofs

First, in the definition ofµ� andC one may introduce the adjacency matrixA
which has elementsAij which are 0 except wheni andj are adjacent in the graph G.
Then withe the number of edges in G,

µ�(G) = e −
(∑

i,j

	ijAji

)
and C(G) =

( ∑
i,j

σijAji

)
− e (10)

where now the sums are over all pairs of vertices. Thence theorem A is obtained.
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The proof of theorem B builds upon the first of the expressions above. Since
	ii = 0, one may add in a diagonal matrix such as that with the degreedi of the ith
site at theith position along the diagonal, to obtain

µ(G) = e +
∑
i,j

	ij
dj δji − Aji

2
= e +

∑
i,j

	ijLji = e +
∑
i,j

(�ii − 2�ij + �jj )Lji
2

.

(11)
Now noting that the column vectorϕ with all componentsϕi = 1 is an eignevector
to L, one sees that (single-index) sums such as

∑
j �jjLji =

∑
j �jj (Lϕ)i = 0, while

the sum%j�ijLji must give the(i, i)th element of the projectionP onto the non-null
subspace ofL, and this we have already noted (near equation (5)) is(N−1)-dimensional
for anN-vertex connected graph. Thus for such a graph

µ(G) = e −
∑
i,j

�ijLji = e −
∑
i

Pii = e − (N − 1). (12)

Now for a graph with a general numberk of components, the whole argument proceeds
similarly, except that the null space ofL (and thence too of� ) is k dimensional, as may
be seen from equation (5). Thence the projectorP = �L has a non-null space (V �=0) of
dimensionN − k, and

µ(G) = e −N + k (13)

thereby establishing theorem B. In fact, the connected graph case is an immediate conse-
quence of a known theorem that for such graphs the sum over nearest-neighbor effective
resistances givesN − 1. This was originally proved by Foster [21], and independently
rediscovered [12,22] a couple of times.

For theorem C the obvious (and well-known) fact thatµ(G) � 0 is here stated to
draw the parallel to the new invariantC(G). For the more substantive part of this theorem
we may make use a result noted in the introduction, that for a connected graph	ij � dij
with equality iff there is but one path between verticesi andj . (See, e.g., [12], but also
it may be worked out using the elimination rule and the series rule of the background
section.) Thence, for neighbor pair{i, j} of sites we have	ij − dij � 0 with equality
iff i andj are in a common cycle G, so that for a sum of	ij − dij over all neighbor
pairs, one obtains equality to 0 iff no two neighbor sites occur in a cycle. That is, this
sum is�0 with equality iff G is acyclic (as occurs iffµ(G) = 0), and theorem C is
established.

Next consider a connected graph G with an edge{i, j} between verticesi andj
such that this edge occurs in no cycle of G, and let a new graph G− be that with this
edge deleted. Now from the argument for theorem C we see that	ij = 1 in G, so
that	ij − 1 = 0, and makes no contribution toC(G), and of course there is no	ij
contribution inC(G′) either. Further the edge{i, j} of G may by the substitution theorem
be deleted in computing	e for any other edge e in G. ThusC(G) has no net effect from
the edge{i, j} at all, so thatC(G−) = C(G), and iteration of such deletions yields
theorem D.
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If µ(G) = 1, then G is one edge short of being acyclic and thus contains a single
cycle with possibly some acyclic appendages or also possibly some additional acyclic
components. Then G↓ is a single cycle of the sizen, and the parallel rule implies that for
any edge e of G↓ one has	e = {1+ 1/(n− 1)}−1 = (n− 1)/n. Using this result in the
defining formula forC, then givesC(G↓) = n(	e− 1} = n/(n− 1), and by theorem D
the indexC(G) (as well as theorem E) is obtained.

For theorem F we note that if G↓ = H ∪ K, then by theorem C we haveµ(G) =
µ(H ∪ K) andC(G) = C(H ∪ K). But the definitions ofµ andC directly imply that
these indices for a disjoint union of two graphs as H and K are given as the sums of the
corresponding indices for H and K, so that theorem F is established.

Corollary G follows directly from theorems E and F.
For a graph withµ(2) there must be two cycles, which if they share no edge then

give G↓ as two disjoint cycles (say of sizesm andn). If on the other hand the two cycles
(say of sizesm andp) share some positive numbern of edges, then these edges must be
contiguous, for otherwise there would be additional cycles, so that it is seen that G↓ is a
“theta” graph as in the theorem H, which is now established.

For theorem I we consider a typical edge e in one path of�m,n,p. If e is in the
path of lengthm, then in computing its effective resistance	m, we use the substitution
rule to replace the two other now parallel paths (of lengthsn andp) by a single edge of
weightRm = {n−1+p−1}−1. Then e appears in a single (weighted) cycle (withm edges
of weight 1 and one edge of weightRm), so that 1/	m is the sum of the inverses of the
net weights for the two paths between the terminuses of e. That is,

	m =
{
1−1 + (m− 1+ Rm)−1}−1 =

{
1+ p + n

S − p − n
}−1

(14)

whereS ≡ mn+np+pm. Similar formulas apply for effective resistances (	n and	p)
for adjacent vertices in the other paths (the various lengthsm,n, p just being permuted
about. But withm,n, andp being edges with respective effective resistances of	m, 	n,
and	p we have

C(�m,n,p) = m(	m− 1)+ n(	n − 1)+ p(	p − 1) (15)

which (with the use of equation (14)) reduces to the formula of theorem I.
A proof of observation J presumably proceeds in somewhat the same manner as

that for lemma H, but is more involved, and is not gone into here.
Also a proof of observation K is not sought, but rather one for the theorem L. For

the graph G with cycle c as in the hypothesis consider the value of	i,j for an adjacent
pair of verticesi andj of c but with this edge{i, j} not in any H+a , in which case	i,j is
given as the resistance between the adjacenti andj in a (weighted) single cycle graph
cW with each of the H+a fragments of G replaced by a suitable weightRa as described in
the substitution rule. But this resistance	i,j does not depend on the orders of the edges
in cW . Next consider a different pair of adjacent verticesi andj now in one of the H+a ,
whence all of the H+b for b �= a may be replaced by theRb-weighted edges in a weighted
c′W , and the various edges may again be permuted about without changing	i,j . Thence
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no effective resistance for any nearest-neighbor pair depends on the order of the edges
in c, and the theorem is established. Corollary M follows quite directly.

To establish theorem N we again use the theorem mentioned in the second para-
graph of this section. For anN-vertex connected graph G this identifiesN − 1 to the
sum over all nearest-neighbor effective resistances. But for an edge transitive graph each
effective resistance for an edge must take the same value	1, while the number of edges
of ad-regular graph isNd/2, so that we have	1 = 2(N − 1)/dN . Thence the formula
for C(G) as in theorem M results.

Corollary O is a direct consequence of theorem N.

6. Further discussion and overview

From our investigation mostly via a suite of theorematic results, it seems our global
cyclicity indexC(G) for a graph G behaves somewhat like the traditional cyclomatic
numberµ(G). However,C(G) is typically less degenerate and further conforms to some
additional intuitively appealing features discussed in the introduction. This indexC(G)
is a global excess bond conductance, whereas the alternative cyclicity indexµ�(G) is
a global bond resistance deficit and behaves identically to the traditional cyclomatic
numberµ(G).

The work of Bonchev and co-workers has considered other indices as indicators of
cyclicity. In particular, the Wiener number

W(G) ≡
∑
i<j

dij (16)

was originally so considered [14], with its value for “similar” systems increasing with
increasing cyclicity. Later [15] the resistance-distance analog (there called the “Kirchoff
number”)

W ′(G) ≡
∑
i<j

	ij (17)

was similarly considered, and also noted was the so-called “Harary number”

H(G) ≡
∑
i<j

1

dij
(18)

considered as a possibility to distinguish certain G with the same value ofW(G). It
might seem natural also to consider the resistance-distance analog

H ′(G) ≡
∑
i<j

σij . (19)

One of the there-perceived advantages forW ′(G) overW(G) was thatW ′(G) typically
seems to be less degenerate. For instance, for the four graphs of figure 6 the Wiener in-
dices are all the same (with value 277) whileW ′(G) was found to distinguish them. The
corresponding values for our cyclicity indexC(G) are also found to be non-degenerate,
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Figure 6. The four catacondensed linear-chain graphs G comprised of two 4-membered rings and two
6-membered rings. All four have the same Wiener index (=277), the same “Harary” index (≈41.45), and
the same cyclomatic number (=4). The values forC(G), H ′(G) − H(G), andW(G) −W ′(G) are listed

below each graph, and finally the cycle distribution is listed for each.

as also indicated in the figure, and indeed one sees that the two indices (C(G) andW ′(G))
order these graphs similarly. Also noted in figure 6 are values for a couple other indices
(to be discussed in the next paragraph) along with the distribution of cycles for each
graph, with a termnm indicating that there arem cycles of sizen. Evidently the or-
dering of these graphs byC(G) increases with the shift of the distribution of cycles to
smaller cycles (such as we have already considered more cyclic). We emphasize that ei-
therW(G) orW ′(G) can be only qualitative indicators of cyclicity, e.g., since they give
non-zero results for trees.

A further aspect of our argument in the introduction for the definition ofC(G)
andµ�(G) concerned the summation only over edges of G, rather than over all pairs of
vertices. The alternative of the summation over all vertices, would bring to the fore the
difference indices∑

i<j

(dij −	ij ) = W(G)−W ′(G) and
∑
i<j

(σij − d−1
ij ) = H ′(G)−H(G). (20)

Our argument in the introduction was that for general pairsi andj the differencesσij −
d−1
ij anddij − 	ij can be non-zero even wheni andj are not in a mutual cycle. This

may be illustrated for the 1,3-dialkyl-cyclobutane graphs

where R represents an alkyl chain R of some lengthn. Then

C(Gn) = 4

3
and µ�(Gn) = µ(Gn) = 1, for all n � 0 (21)

while ∑
i<j

(
σij − d−1

ij

) ≈ 2.33,3.04,3.46,3.76,3.99,4.17, 4.33, . . .

∑
i<j

(dij −	ij ) = 3,7,13,21,31,43,57,73,91,111, . . . (22)

for n = 0,1,2,3,4,5,6, . . . .
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Evidently, asn increases these species lead to ever increasing values for these indices
involving sums over all pairs of vertices, and in the case of resistance deficits even leads
to a divergent sequence, although we intuit that the cyclicity of these species (with a ring
of fixed size which is an ever smaller fraction of the whole) should not increase. That
is, these full vertex-pair sum indices do not seem to us to fulfill the conditions of a good
cyclicity index. The summands in our definitions forC(G) andµ�(G) give non-zero
contributions iff the two adjacent vertices labelling the summand are within a common
cycle, and then the contribution is positive (as noted in our “Ordering theorem for	

andd”).
Other interesting graph invariants of potential chemical relevance might be ex-

pected. One might define a mean bond excess conductance invariant asC(G)/e(G), as
some sort of mean cyclicity contribution per bond. And other cyclicity indices paying at-
tention to conductance excesses (or resistance deficits) for pairs of vertices farther apart
than neighbors might be of value to investigate. The further fact that	ij is [12] an in-
trinsic graph metric further supports the fundamentality of these electric-network-based
ideas. With this in mind it has been suggested [23] that this metric could appropriately
termed the “electric metric”. But we still prefer the earlier name of “resistance dis-
tance”, in part because the electrical interpretation is but one possibility (as noted in our
discussion at and following equation (6)).

Further it may be noted that there are a number of invariants which have been sug-
gested [24–27] based on matrix inversion problems related to that of computing the gen-
eralized inverse� somewhat similar to what is done for applications utilizing electrical-
network ideas. Indeed Gollender et al. [24] are motivated by electrical network theory
and speak of a network of “potentials” on the sites, but instead ofL and its generalized
inverse�, they useI + L (with I the identity matrix) and its true inverse(I + L)−1,
whence with the ensuant manipulations it seems that different sorts of invariants (and
“potentials” other than electrical potentials) arise. More generally, such manipulations
merge into the theory of the Laplacian matrix, which may be perceived as of wider sig-
nificance than electrical network theory. Thence in other contextsL has been somewhat
used in chemistry, as in [28–31], and fairly intensively treated in mathematical graph
theory – e.g., as reviewed in [32–34]. Notably Fiedler’s Laplacian-based “geometric”
results [35] have a neat interpretation (and extension) in terms of our metric ideas [19].

Overall it seems that we have an interesting new graph invariantC(G), a global
excess bond conductance which is a cyclicity measure. A related global bond resis-
tance deficitµ�(G) is found to be the ordinary cyclomatic number. General support is
thus garnered for the general contention [12,13,15,19,20,31] that resistance distance and
related electrical-network ideas may have wide (chemical) graph-theoretic application.
The novelty of this general idea is attested to by the fact that the associated resistance-
distance metric (	) is not found in the comprehensive book [36] of Buckley and Harary
on graph distances. Thence it is hoped that the present and earlier work on this metric
and related ideas should prove of interest not only for chemists but also graph theoreti-
cians, such as Professor Frank Harary, to whom we dedicate this article on the occasion
of his 80th anniversary of his birthday.
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